

Hadronic fluctuations at non-zero density ...

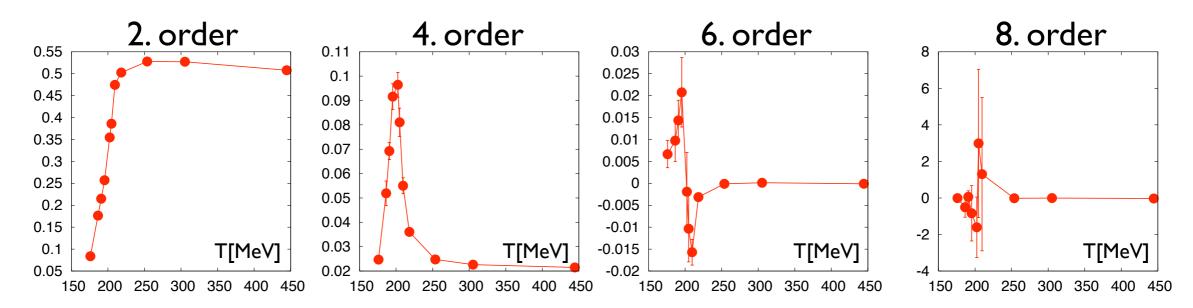
Christian Schmidt

Universität Bielefeld

June 8-12, 2009 at Brookhaven National Laboratory

Hadronic fluctuations at non-zero density ...

... an approximation by Taylor expansion



Plan:

- I. Introduction to the Taylor expansion method
- 2. Baryon number, strangeness and electric charge fluctuations
- 3. Correlations among charges

QCD partition function:

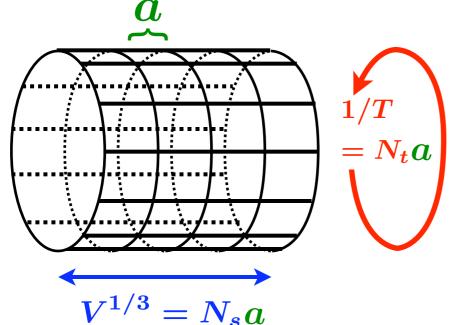
$$egin{aligned} Z(oldsymbol{V},oldsymbol{T},\mu) &= \int \mathcal{D}A\mathcal{D}\psi\mathcal{D}ar{\psi} \ \exp\{-S_E\} \ S_E &= \int_0^{1/T} dx_0 \int_{oldsymbol{V}} d^3x \mathcal{L}_E(A,\psi,ar{\psi},\mu) \end{aligned}$$

→ Monte Carlo integration:

 $pprox 10^6$ lattice points,

 $pprox 10^8$ degrees of freedom

• Geometry of space-time: $N_s^3 \times N_t$ (4d - torus)



account for:

- ullet finite volume effects $N_s/N_t\gtrsim 4$
- dimension 4 operatoren
- → rather large lattice spacings
 - → use improved action (p4fat3)

Lattice QCD at non-zero temperature (and density)

ullet direct MC-simulation for $\mu>0$ not possible

$$egin{array}{ll} Z(V,T,\mu) &=& \int \mathcal{D}A\mathcal{D}\psi\mathcal{D}ar{\psi} \; \exp\{S_F(A,\psi,ar{\psi})-eta S_G(A)\} \ &=& \int \mathcal{D}A \; \det[M](A,\mu) \exp\{-eta S_G(A)\} \end{array}$$

complex for $\mu>0$

Interpretation as probability distribution is necessary for MC-integration

$$ightarrow$$
 perform a Taylor expansion around $\mu=0$

The Taylor expansion method

• start from Taylor expansion of the pressure,

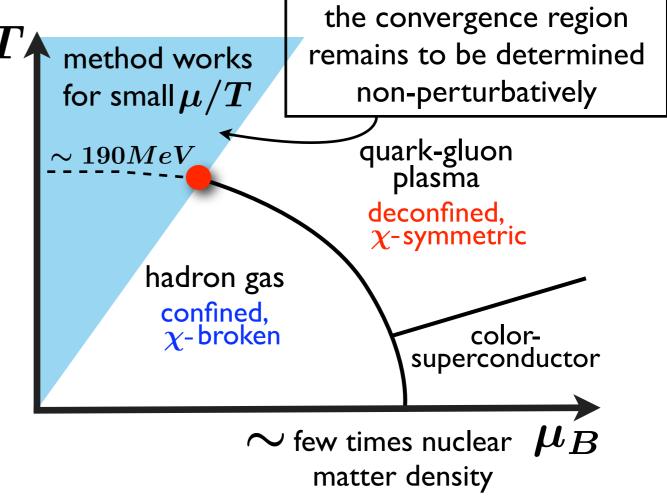
$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{i,j,k}^{u,d,s} \left(\frac{\mu_u}{T}\right)^i \left(\frac{\mu_d}{T}\right)^j \left(\frac{\mu_s}{T}\right)^k$$

- calculate expansion coefficients for fixed temperature
- ullet no sign problem: all simulations are done at $\mu=0$

$$egin{array}{ll} c_{i,j,k}^{u,d,s} &\equiv & rac{1}{i!j!k!}rac{1}{VT^3} \\ && \cdot rac{\partial^i\partial^j\partial^k \ln Z}{\partial(rac{\mu_u}{T})^i\partial(rac{\mu_d}{T})^j\partial(rac{\mu_s}{T})^k} igg|_{\mu_{u,d,s}=0} \end{array}$$

method is straight forward:
 all terms can be generated automatically

Allton et al., PRD66:074507,2002; Allton et al., PRD68:014507,2003; Allton et al., PRD71:054508,2005.



The Taylor expansion method

- use unbiased, noisy estimators to calculate $c_{i,j,k}^{u,d,s}$ \longrightarrow see C. Miao, CS, PoS (Lattice 2007) 175.
- ullet line of constant physics: $m_q=m_s/10$ (physical strange quark mass)
- ullet measure currently up to $~{\cal O}(\mu^8) \longleftrightarrow (N_t=4)$ ${\cal O}(\mu^4) \longleftrightarrow (N_t=6)$
- ullet expansion coefficients $c_{i,j,k}^{u,d,s}$ are related to B,S,Q-fluctuations

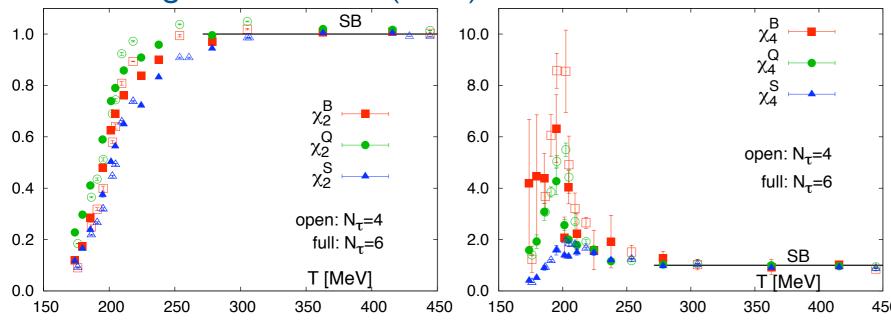
$$n_{B} = \frac{\partial(p/T^{4})}{\partial(\mu_{B}/T)} = \frac{1}{3}(n_{u} + n_{d} + n_{s}) \qquad \mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q}$$

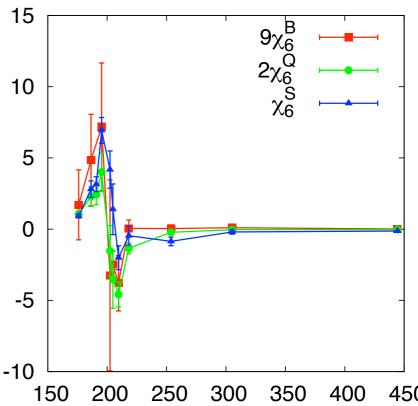
$$n_{S} = \frac{\partial(p/T^{4})}{\partial(\mu_{S}/T)} = -n_{s} \qquad \mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q}$$

$$n_{Q} = \frac{\partial(p/T^{4})}{\partial(\mu_{Q}/T)} = \frac{1}{3}(2n_{u} - n_{d} - n_{s}) \qquad \mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

ullet choice of $\mu_u \equiv \mu_d$ is equivalent to $\mu_Q \equiv 0$

B,Q,S fluctuations (at $\mu=0$)





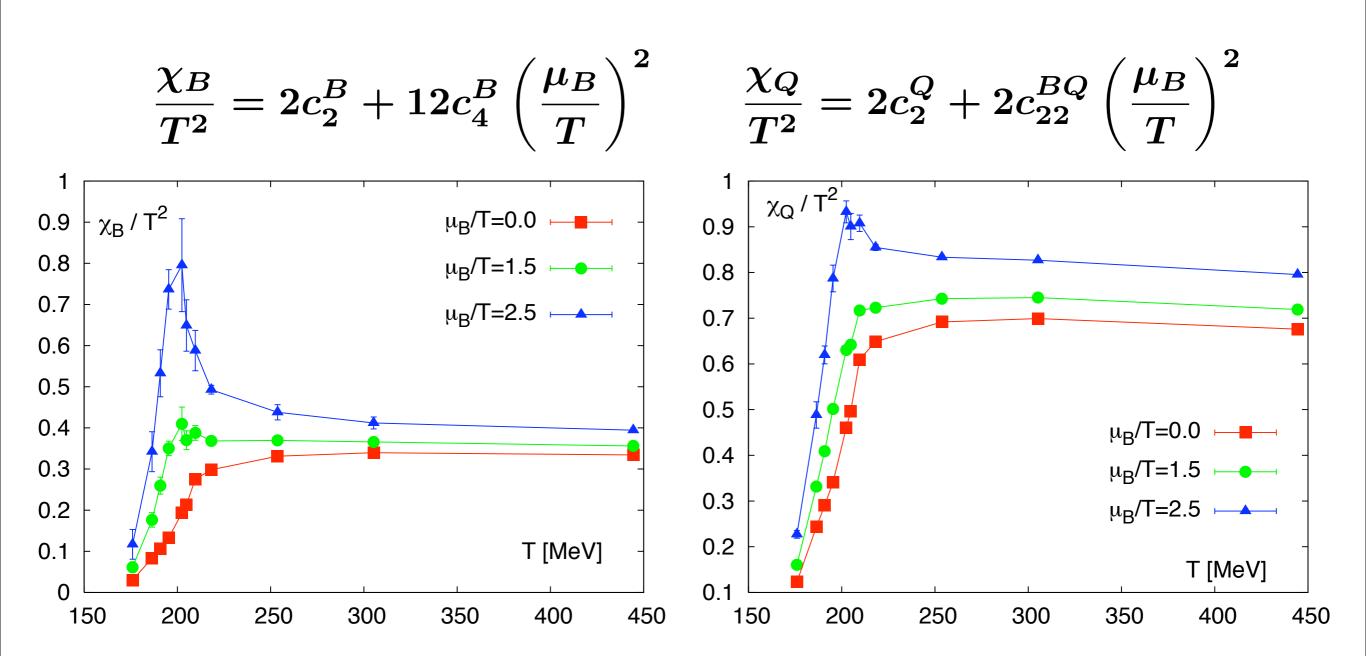
 \longrightarrow small cut off effects in the transition region (similar to e-3p, p, ...) 150 200 25 \longrightarrow general pattern can be understood by the singular behavior of the free energy

$$\chi^B_{2n} \sim \left| rac{T - T_c}{T_c}
ight|^{2-n-lpha}, \qquad lpha pprox -0.25$$

 χ^B_2 dominated by the regular part, χ^B_4 develops a cusp.

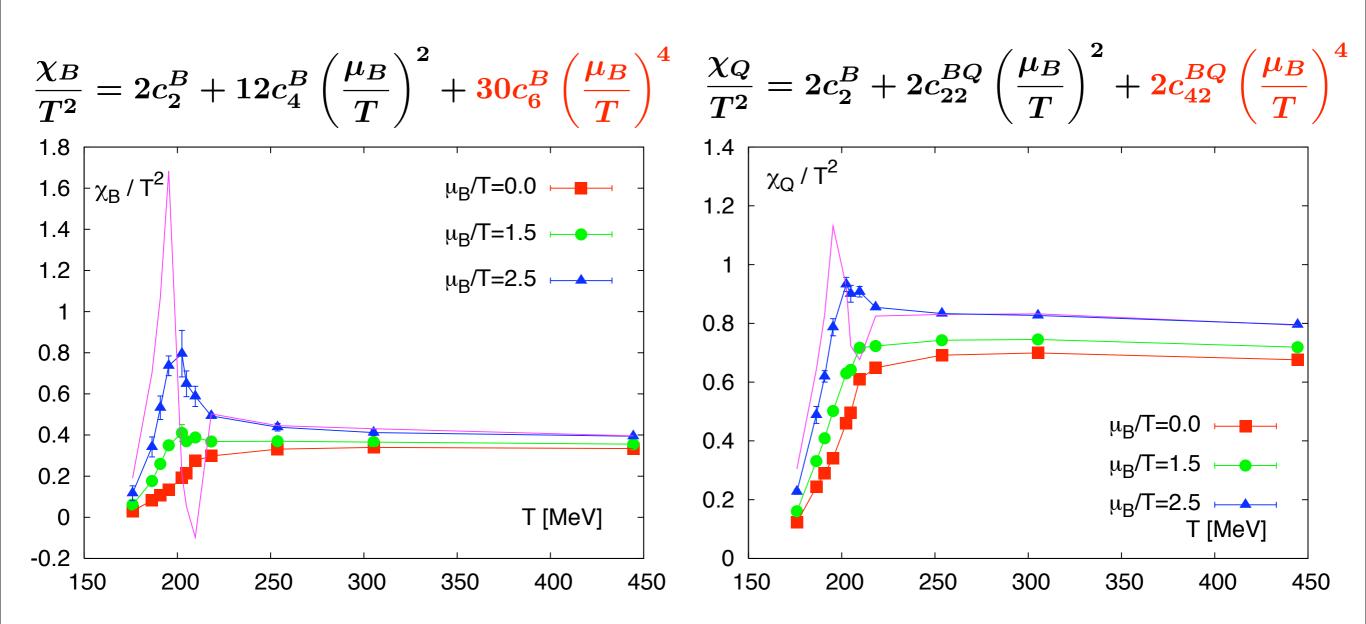
• We define fluctuations of charge X as

$$egin{array}{lll} \chi_2^X &=& rac{1}{VT^3} \left\langle N_X^2
ight
angle &=& 2! \ c_2^X \ \chi_4^X &=& rac{1}{VT^3} \left(\left\langle N_X^4
ight
angle - \left\langle N_X^2
ight
angle^2
ight) &=& 4! \ c_4^X \ \chi_6^X &=& rac{1}{VT^3} \left(\left\langle N_X^6
ight
angle - 15 \left\langle N_X^4
ight
angle \left\langle N_X^2
ight
angle + 30 \left\langle N_X^2
ight
angle^3
ight) &=& 6! \ c_6^X \ \end{array}$$



evidence for a critical point?

Seeing "true" singular behavior as a signal for a critical point requires large volumes and high order Taylor expansions



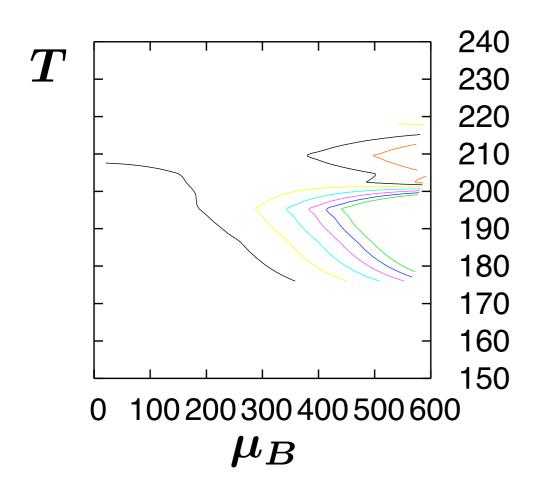
evidence for a critical point?

Seeing "true" singular behavior as a signal for a critical point requires large volumes and high order Taylor expansions

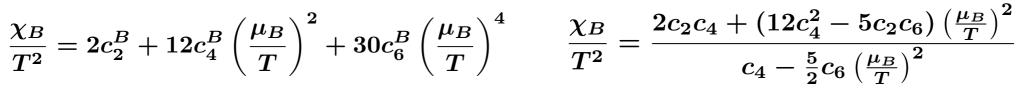
Contour plots:

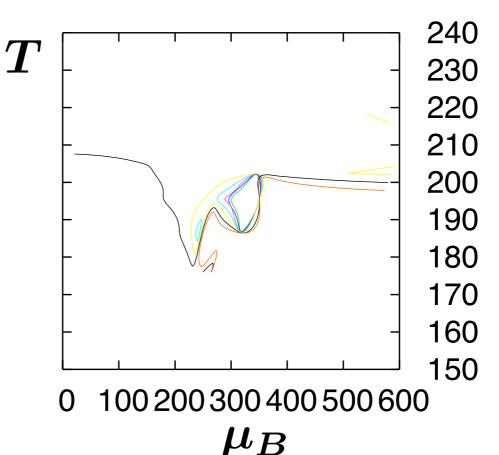
Taylor 6th order:

$$rac{\chi_B}{T^2} = 2c_2^B + 12c_4^B \left(rac{\mu_B}{T}
ight)^2 + 30c_6^B \left(rac{\mu_B}{T}
ight)^2$$



Pade [2,2]:



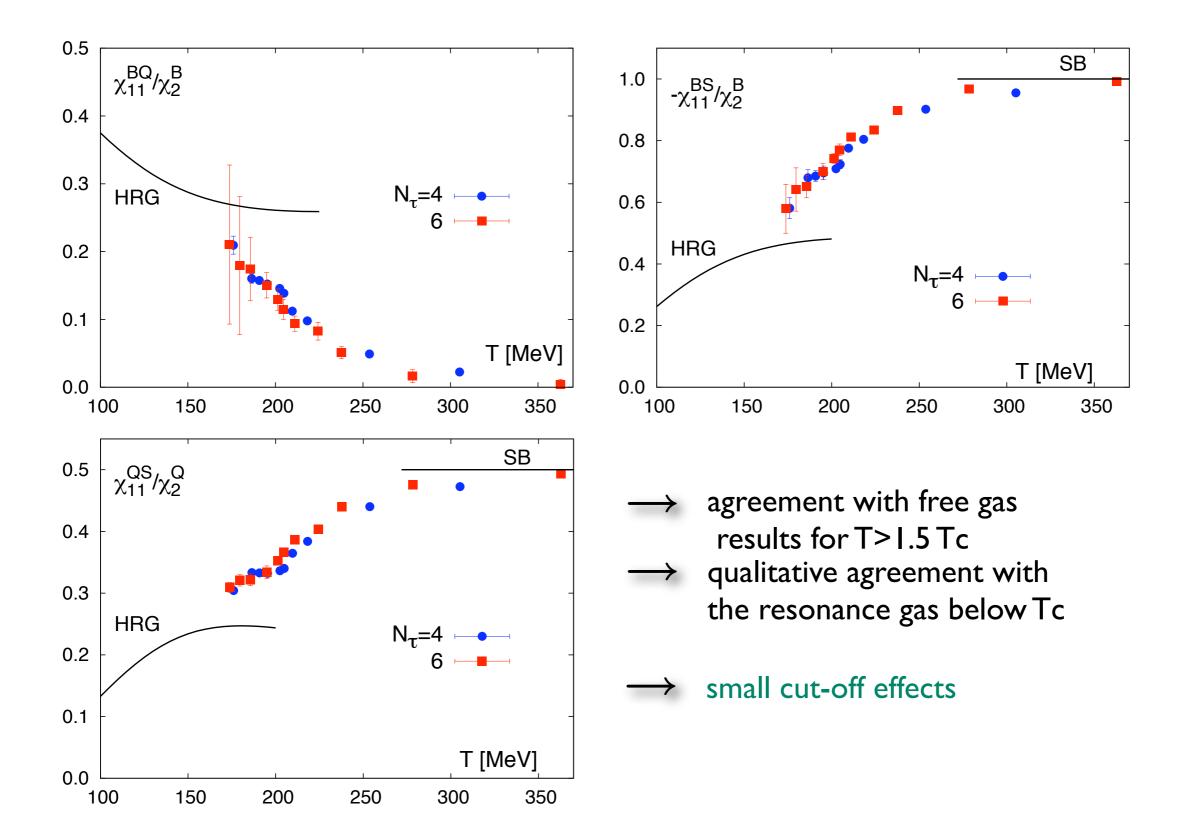


1.25 0.75 0.5 0.25

does resummation of coefficients help?

similar results have been obtained by Gavai, Gupta, PRD 78 (2008) I 14503.

Hadronic Correlations (at $\mu=0$)

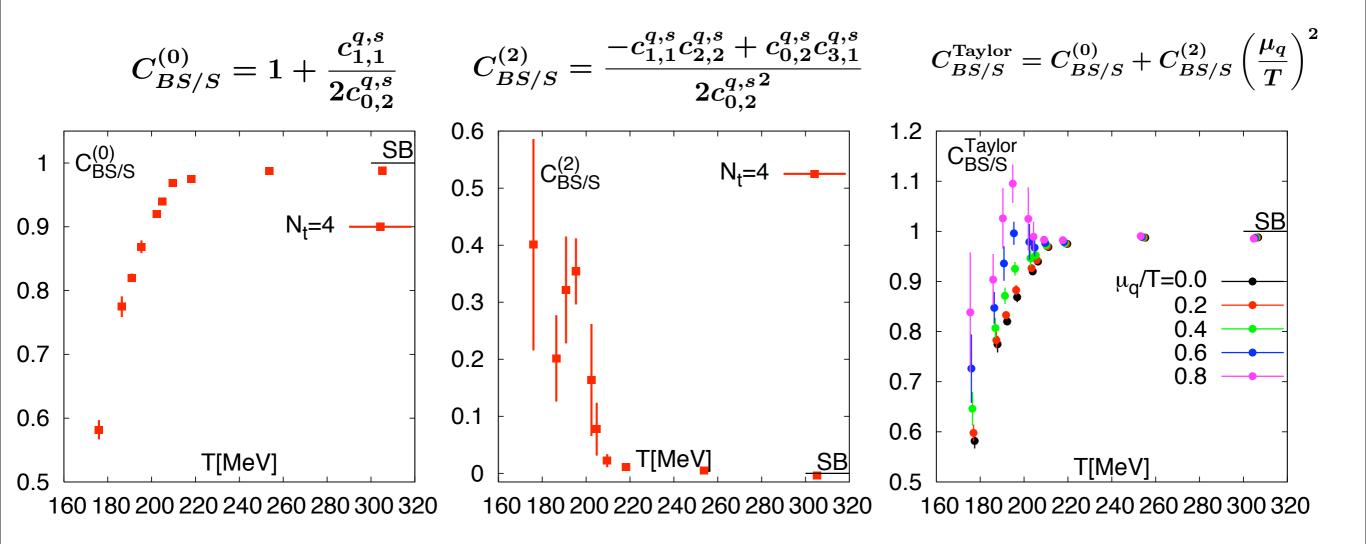


Hadronic Correlations (at $\mu>0$)

$$C_{BS/S} \equiv -3rac{\chi_{11}^{BS}}{\chi_{2}^{S}} = -3rac{\langle BS
angle - \langle B
angle \langle S
angle}{\langle S^2
angle - \langle S
angle^2}$$

Koch, Majumder, Randrup (`05)

Taylor expansion in μ_q/T with $\frac{\partial}{\partial \mu_q} = \left[\frac{\partial}{\partial \mu_u} + \frac{\partial}{\partial \mu_d}\right]$



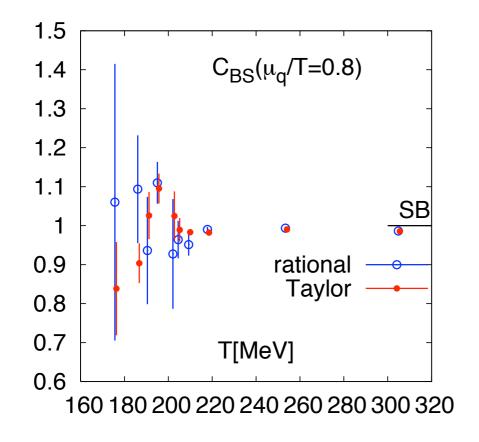
Hadronic Correlations (at $\mu > 0$)

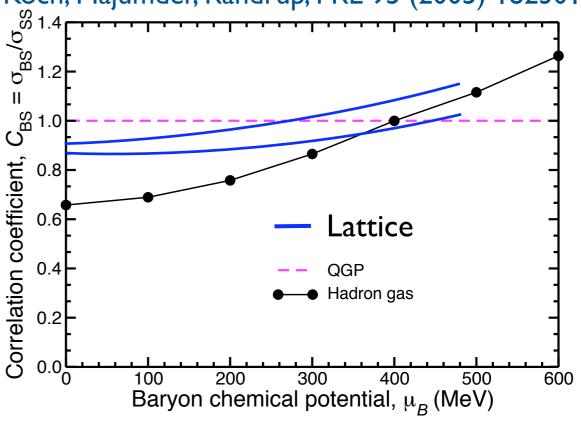
$$C_{BS/S} \equiv -3rac{\chi_{11}^{BS}}{\chi_{2}^{S}} = -3rac{\langle BS
angle - \langle B
angle \langle S
angle}{\langle S^2
angle - \langle S
angle^2}$$

Koch, Majumder, Randrup (`05)

Taylor expansion in μ_q/T with $\frac{\partial}{\partial \mu_q} = \left[\frac{\partial}{\partial \mu_u} + \frac{\partial}{\partial \mu_d}\right]$

$$C_{BS}^{\rm rational} = 1 + \frac{c_{1,1}^{q,s} + c_{3,1}^{q,s} (\mu_q/T)^2 + c_{5,1}^{q,s} (\mu_q/T)^4}{2c_{0,2}^{q,s} + 2c_{2,2}^{q,s} (\mu_q/T)^2 + 2c_{4,2}^{q,s} (\mu_q/T)^4}$$

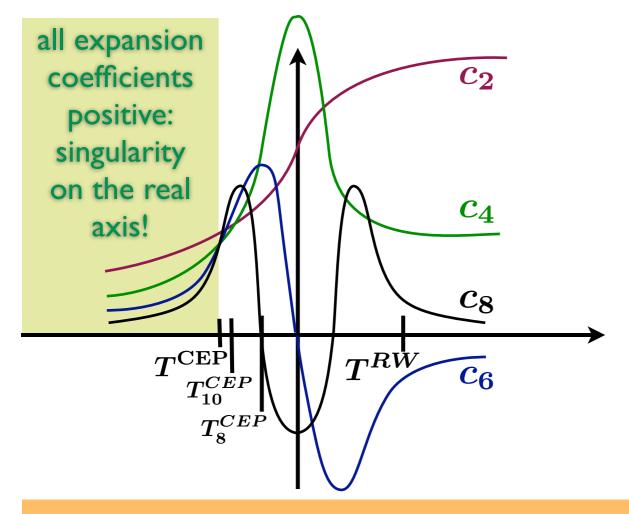




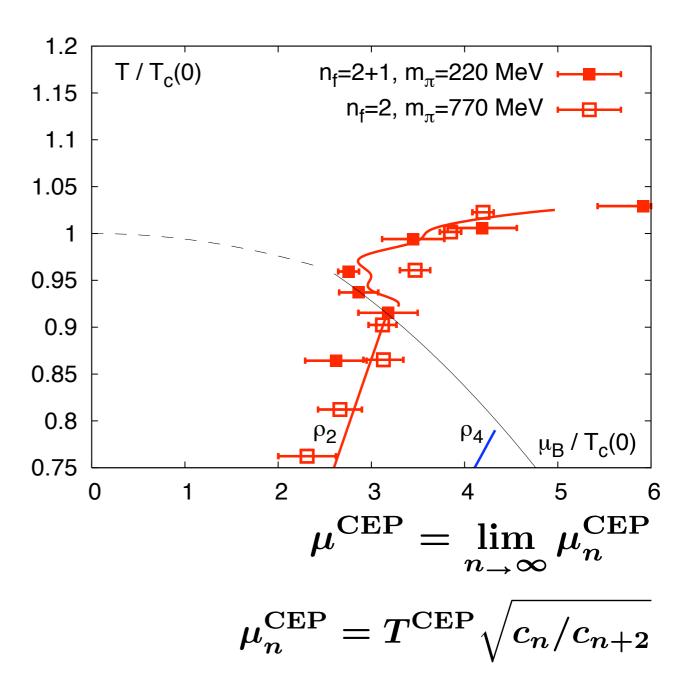
Radius of Convergence

Method to determine the CEP:

- find largest temperature were all expansion coefficients are positive $\rightarrow T^{\text{CEP}}$
- determine the radius of convergence at that temperature $\rightarrow \mu^{\text{CEP}}$



ightharpoonup first non-trivial estimate of T^{CEP} from c_8 second non-trivial estimate of T^{CEP} from c_{10}



The Resonance gas limit:

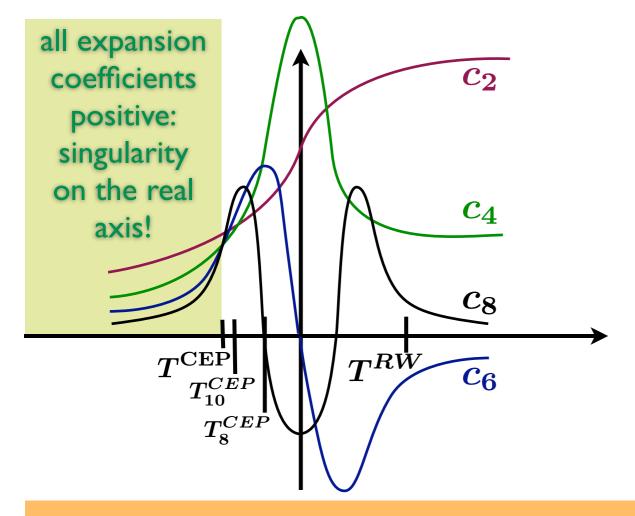
$$\frac{p}{T^4} = G(T) + F(T) \cosh\left(\frac{\mu_B}{T}\right)$$

$$\longrightarrow \rho_n = \sqrt{(n+2)(n+1)}$$

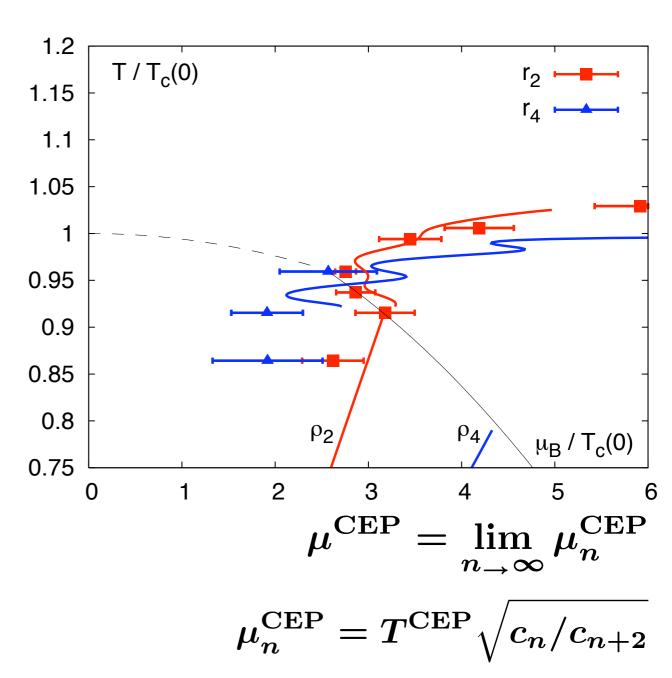
Radius of Convergence

Method to determine the CEP:

- find largest temperature were all expansion coefficients are positive $\rightarrow T^{\text{CEP}}$
- determine the radius of convergence at that temperature $\rightarrow \mu^{\text{CEP}}$



ightharpoonup first non-trivial estimate of $T^{
m CEP}$ from c_8 second non-trivial estimate of $T^{
m CEP}$ from c_{10}



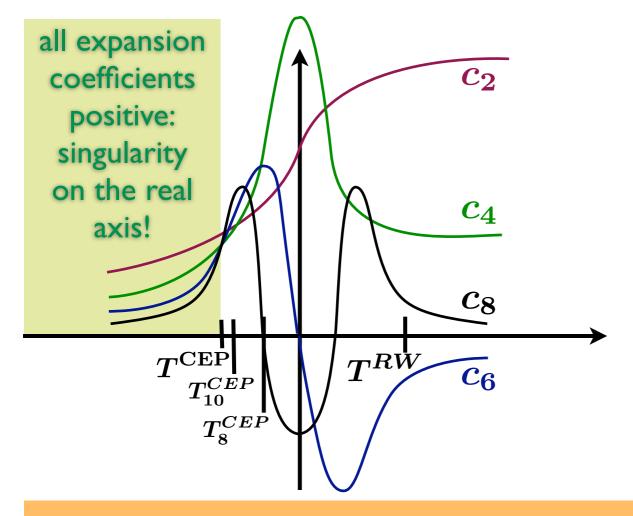
The Resonance gas limit:

$$rac{p}{T^4} = G(T) + F(T) \cosh\left(rac{\mu_B}{T}
ight)$$
 $\longrightarrow
ho_n = \sqrt{(n+2)(n+1)}$

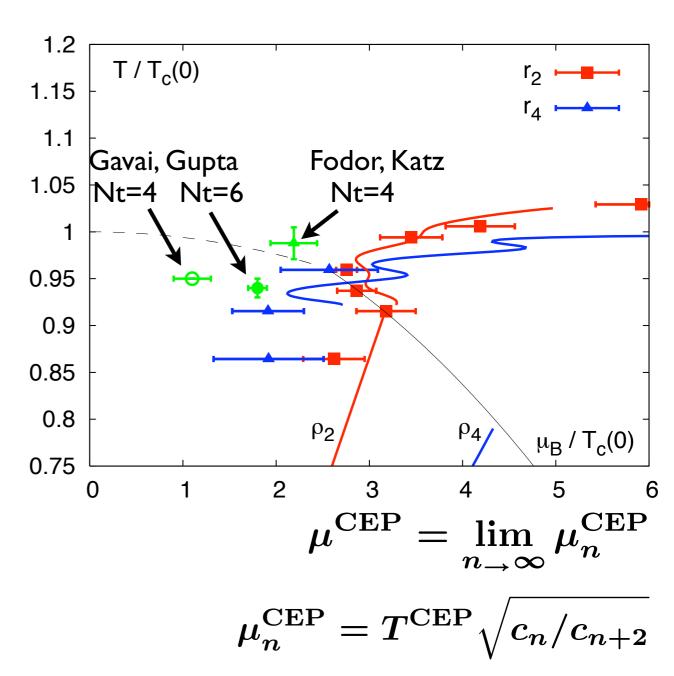
Radius of Convergence

Method to determine the CEP:

- find largest temperature were all expansion coefficients are positive $\rightarrow T^{\text{CEP}}$
- determine the radius of convergence at that temperature $\rightarrow \mu^{\text{CEP}}$



ightharpoonup first non-trivial estimate of T^{CEP} from c_8 second non-trivial estimate of T^{CEP} from c_{10}



The Resonance gas limit:

$$\frac{p}{T^4} = G(T) + F(T) \cosh\left(\frac{\mu_B}{T}\right)$$

$$\longrightarrow \rho_n = \sqrt{(n+2)(n+1)}$$

Summary

- Taylor expansion coefficients show small cutoff effects (with improved p4fat3 action)
- partial sums of Taylor expansion have to be taken with care, a re-summation (Pade) might help
- \bullet second order expansion of $C_{BS/S}$ indicate growth of correlations below Tc (compatible with HRG)
- the radius of convergence determines the position of the CEP
- including 6th order in the approximation of the convergence radius will decrease approximations for μ_B^{CEP} and T^{CEP}
- ullet warning: shown results mostly $N_ au=4\,$ and masses are not physical

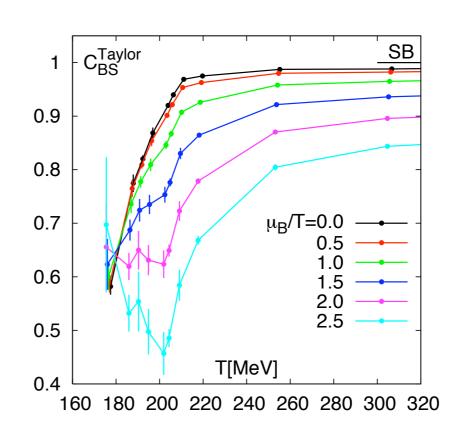
Hadronic Correlations (at $\mu > 0$)

$$C_{BS/S} \equiv -3rac{\chi_{11}^{BS}}{\chi_{2}^{S}} = -3rac{\langle BS
angle - \langle B
angle \langle S
angle}{\langle S^2
angle - \langle S
angle^2}$$

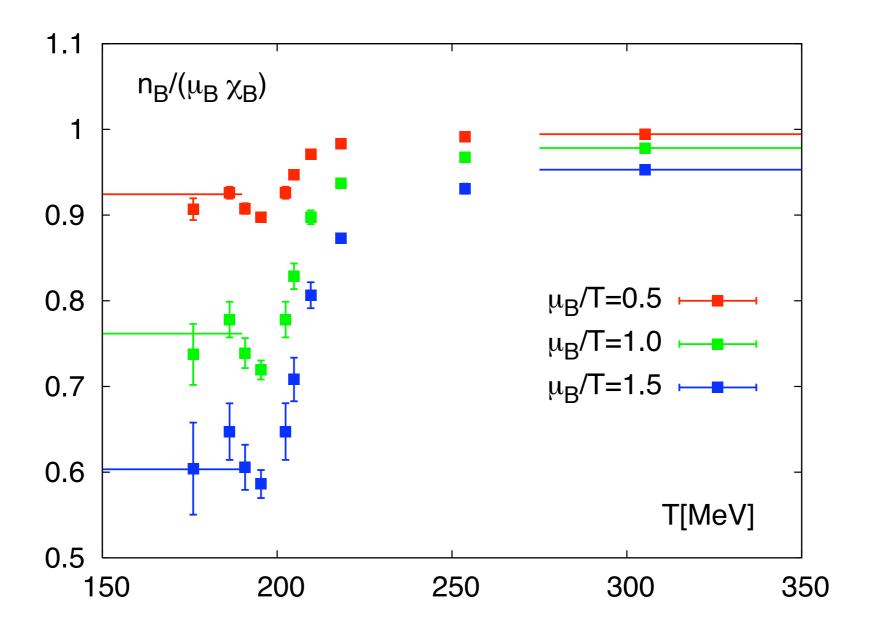
Koch, Majumder, Randrup (`05)

Taylor expansion in μ_B/T with $\frac{\partial}{\partial \mu_B} = \frac{1}{3} \left[\frac{\partial}{\partial \mu_u} + \frac{\partial}{\partial \mu_d} + \frac{\partial}{\partial \mu_s} \right]$





Compressibility



Isentropic Trajectories

